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Rigorous, Full-Vectorial Source-type Integral

Equation Analysis of Circularly

Curved Channel Waveguides
Harrie J. M. Bastiaansen, J. Michiel van der Keur, and Hans Blok, Member, IEEE

Abstract-A source-type integral equation method is presented

to determine the propagation constants, the radiation losses, and
the electromagnetic field distributions of the dkcrete (“guided”)
modes in circularly curved, integrated optical channel waveguides
embedded in a homogeneous background. The method can be

extended to the case of a multilayered background, e.g. a ridge

waveguide. The source-type integral equation forms an eigen-

value problem, where the electric field strength represents the

eigenvector. This problem is solved numerically by applying the
method of moments. Numerical results are presented for vari-

ous rectangular channel waveguides situated in a homogeneous

embedding and compared with those of other modeling methods.

I. INTRODUCTION

o PTICAL WAVEGUIDES are the basic components of

optoelectronic integrated circuits. They interconnect var-

ious devices present on a circuit. As such, interconnecting

waveguide tracks along which light is guided consist of both

straight and curved sections. The sections are either of the

ridge waveguide type or of the diffused channel type. For

a successful design of these optoelectronic circuits, accurate

modeling tools for both straight and curved waveguides are

essential. In this paper we focus on a rigorous computation of

the properties of the curved waveguide sections, i.e. radiation

loss and modal field distributions. In recent approaches to

tackle this problem [1], [2] an effective index method for

curved waveguides has been most widely used to transform the

rather complicated ridge or channel waveguide structure into

a curved slab waveguide structure (for an excellent overview

see [3]). The approximations made in these approaches show

that although good curved waveguide designs have been

made, there is still need for a rigorous approach to the

problem, particularly when higher-contrast media are going

to be used. The formulation of the general 3-dimensional

curved waveguide problem in terms of source-type integral

equations along the lines followed by Baken [4] and others

[5]-[7] provides such a rigorous approach.

Whether a particular modeling approach can be applied

successfully depends on the radius of curvature (in terms of

the operating wavelength) and on the contrast between the

core of the curved waveguide and its surrounding. Due to

their approximations, most earlier approaches are restricted to
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curved structures with relative large radii of curvature. An

extensive discussion on the actual numerical modeling of bent

slab waveguides is presented in the book by Vassallo [3, ch.

5]. It shows that little has been published about a full-vectorial

analysis of sharply bent waveguides. Apart from the Effective

Index Method [1] and the Method of Lines [2], Rozzi has

studied the effect of curvature using a “local modes” technique

[8], and Oksanen and Linden [9] have investigated transversely

anisotropic, curved waveguides with a variational technique.

A beam propagation analysis of bent optical waveguides [10]

has been based on the scalar wave equation.

In [11] we used a source-type integral equation analysis

to investigate the simplest curved waveguiding structure: the

circularly curved, radial inhomogeneous slab waveguide. In

the present paper a full-vectorial source-type integral equation

analysis of circularly curved clhannel waveguides with arbi-

trary cross-section embedded in a homogeneous background is

presented. Applying an azimuthal Fourier transform, a source-

type integral equation for the electric field strength within

the waveguiding region in the azimuthal spectral domain is

derived. With an appropriate spatial Fourier transform in the

transverse direction, a transverse spectral domain representa-

tion for the electric Green’s tensor is derived, allowing for

an integral equation formulation in which the singular part

of the Green’s tensor is integrated analytically. The resulting

integral equation is subsequently solved with the method of

moments. In order to do this efficiently and in a numerically

stable manner, special care is needed for the proper choice

for the expansion and weighting functions. Numerical results

have been obtained for curved channel waveguides with a

rectangular cross-section. Results will be discussed and com-

pared with those of other numerical techniques. In this paper

we restrict ourselves to channel waveguides embedded in a

homogeneous background. However, similar to the source-

type integral analysis for straight channel waveguides [6],

the formulation can be extended to channel waveguides in a

multi-layered background (e.g. a ridge waveguide), providing

a powerful modeling tool for the design of optical waveguides.

This will be the goal of forthcoming research.

II. FORMULATION OF THE PROBLEM

The waveguiding structure we will investigate is the cir-

cularly curved channel waveguide embedded in a homoge-

neous background (Fig. 1). A right-handed cylindrical refer-

ence frame {O, ~X,&, & } is introduced to specify the position
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Fig. 1. Configuration of the circular curved channel waveguide in an homo-
geneous background.

in space. The x-axis coincides with the axis of curvature,

the p-axis is along the center of the channel waveguide, and

the p-axis points in the radial direction. The background has

perrnittivity eb and permeability W.. The background exhibits

losses and its permittivity is complex and situated in the fourth

quadrant of the complex plane:

~b = ~: ‘j~~, E;, E: >0. (1)

The channel waveguide has arbitrary cross-section DW with an

inhomogeneous permittivity profile eW(x, p) and permeability

~.. The cross-section of the waveguide DW is described

through

DW : PL<P<PH> z~(p) < x < %H(p). (2)

The channel waveguide is circularly curved around the axis

p = O. The azimuthal p-direction is assumed to extend to

infinity, i.e. no 2n-periodicity of the electromagnetic fields is

assumed. As a consequence, the various parts of the curved

section have to be insulated from each other’s radiation fields.

Therefore, a perfectly conducting screen is put around the axis

of curvature. In our case, the screen is placed at the origin

pm = o.

In the waveguiding structure discrete modes can propagate.

These are time-harmonic solutions of the source-free Maxwell

equations for which the field profiles show no deformation

upon propagation through the structures, i.e. the field profiles

are independent of the azimuthal p-coordinate. For discrete

modes propagating in the positive azimuthal direction, the

electromagnetic field constituents of angular frequency w and

azimuthal wavenumber kp have the form

{~)~}(~) P, 91 t) = {@&}(~, P; k~) f=d~(~~-kw)l (3)

The discrete modes in curved waveguides are discrete in the

azimuthal direction, but leaky in nature [11]. The azimuthal

wavenumber kw is complex valued and situated in the fourth

quadrant of the complex plane:

kp =k; –jk; , is;, k; >0. (4)

The complex time factor exp [jut] is omitted in the remainder

of this paper. The field constituents are solutions of Maxwell’s

equations in the space domain in cylindrical coordinates:

–5 x B(3,p; k+) + .7WE(X, P)@(x, p; kp) = f!,

Q x E($$ P; k9) + @flo@T P; kp) = Q (5)

where the space domain nabla-operation ~ x is defined

through

~k~ ~p}lz + {–yQ x A ={:ap(P.ZJ + y ~k~ A. – a.Ap}~p

+ {8.2P – apx.}ip. (6)

Maxwell’s equations (5) are a set of six homogeneous

coupled partial differential equations. Non-trivial solutions

only exist for discrete values of the azimuthal wavenumber ky.

These solutions are the discrete modes of the curved channel

waveguide, the kp-values are the propagation constants. In

this paper a full-vectorial source-type integral equation method

is derived to determine the propagation constants and the

amplitude distributiuons of these discrete modes. In [11], the

source-type integral method was successfully applied to the

case of circularly curved slab waveguides. In the next sec-

tion, the source-type integral equation analysis for circularly

curved channel waveguides embedded in an homogeneous

background is derived. The extension of this method to multi-

layered backgrounds will be the subject of a subsequent paper.

III. THE SOURCE-TYPE INTEGRAL EQUATIONS

In the source-type integral analysis, the channel waveguide

DW is regarded as a perturbation of its homogeneous embed-

ding through the introduction of an electric contrast source in

Maxwell’s equations (5):

–E x E(Z> p; kw) + jwcbz($, p; kw) = –z’(m, p; kq),

5 x i(~> P; ~$o) + 3WOE(T p; ~p) = Q> (7)

where ~C represents the electric contrast-source density that is

defined within the waveguide DW through

~c(z, Q; kq) = .j~{&(~, P) – &b}@(~, P; ~p) (8)

and vanishes everywhere outside DW.

Integral representations for the solution of (7) can be ob-

tained in several ways. A derivation on the basis of the vector

eigenfunction expansion of the dyadic Green’s tensor as de-

scribed for a closely related problem in [12, ch. 2] is possible.

Because of its intrinsic simplicity, however, we use the shift-

invariance of the homogeneous background in the transversal

z-direction in this paper to solve (7) in the transverse Fourier

domain. Hitherto, Maxwell’s equations in the spatial domain

(7) are submitted to the spatial Fourier transformation
m

~(kx) = f j(r) exp[jkZz]dm,
—cc

~(z) = ~ f_m ~(km) exp[–jkzz]dk., (9)
m

yielding Maxwell’s equations in the Fourier transform domain

–s(k,.: p; kp) x E(kz; p; kp)+juebi(kz; p; L@) =
--c

–J (kz; p;kp),

5(L; P; kf) x M.; P; k)+w~oah; P; kp) = !2,

(10)
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in which the Fourier transform domain nabla-operation ~x

is defined as

~’1%Ap}iz
5(kk; P;kp) x 2 = {;ap(PAq) + ~

+ {–jk.Ap–apl.}ip, (11)

and the Fourier transformed electric contrast-source density

equals

--c

/

ZH (P)

J (k.; p; kp) = Jc(z, p; kq) exp[~kzz]dz. (12)
XL(P)

The meaning of z~(p) and ZH(P) is indicated in Fig. 1.

For the solution of Maxwell’s equations in the Fourier

transform domain (10) a source-type integral representation

can be derived, The derivation is based on the global form of

Lorentz’s reciprocity theorem.

A. Lorentz ’s Reciprocity Theorem

The local form of Lorentz’s reciprocity theorem=fo$ws

from application of the transverse nabla-operator ~t.l! =

I/p 8P(p~p) to the vector

~ =~-4(kz; p;kp) x #(-k.; P; –kq)

~B ~ .4

–~ (–kz; p;–kw) XE (L%; P;&), (13)

~A ~A ~A

where the electromagnetic fields {g , H , ~ } (k.; P; k~)

and {&, =B, IB } (k.; p; kq) Satisfy the electromagnetic field
equations (10) in the same spatial domain. Using the vector

relations

~t.(~Ax&B) = &B,5(k.; p; kp) x &A

~A z ~B

–~ .y(–k.; p; –kT) x H ,

~t.(~BxjA) = ~A.&kz;p; –kp) x SB

~B z ~A

–E .Y(lb; p; kf) x H , (14)

and Maxwell’s equations (10), the local form of Lorentz’s

reciprocity theorem in the Fourier transform domain becomes

— ~B(–k.;p;–kJ74(k.;p;hp)
~B

–EA(kz; /2; kp).J (–k.; P; –kf).

To transform the local form of the reciprocity

(15)

theorem into

a global one, (15) is substituted into the one-dimensional

divergence theorem of Gauss

/
~t X ~(kz; p; kv)pdp = pH~p(kx; PH; ‘w)

L

—
pLfiP(~x; pL; f&)> .C=(pL, pH). (16)

For vector fields p~(k~; p; L) VaniSh@ at the @@ P =

O and at infinity p = W, the right-hand side vanishes.

Substitution of the reciprocity theorem in local form (15)

yields its global form

/

~B ~A

~{ E (-L; P; -kO).J (kc; P;kY)

— ~A(kz; p;kP).jB(–kz; p; –~q) }pdp = o, (17)

in which S is an arbitrary p-interval enclosing all external

electric sources.

B. Source-type Integral Equations in the

Fourier Transform Domain

In the reciprocity theorem (17), state_”$” is~dentified with
-.

the electromagnetic field distribution {~, ~, Z } of a discrete

mode. Subsequently, state “1?” is for p = z, p, P identified
~G,p ~G,P

with the Green’s state {~ , ~ , (1/P’)6(P - P’)iP} for

an electric point-source, situated in p = p! and oriented

in the direction of the unit vector ~P. Substitution of the

electromagnetic fields of state “A” and state “1?” in the global

form of the reciprocity theorem yields

/

PH ~G,P

iip(kz; p’; kw) = <E (–kz; p,p’; –kp).

PL
-_c

J (kr; P; ~p)pdp. (18)

For the meaning of pL and pH, see Fig. 1. The tensor ~ is the—
~G,p

electric Green’s tensor containing ~ as its p-th column:

E,G,P

&p(-hP, P’; –kp) = Eq (–kx; p,p’; –k9). (19)

For the electric Green’s tensor a reciprocity relation can

be o~ta~~ed by identification of the electromagnetic state

{~, H, ~ } in (18) temporarily with the second Green’s state

{~G “, ~~ “, (1/p’’)8(p - p“)~g}, for q = c, p, p. This results

in

tipq(kz;p’,p’’;k+) = Ggp(–kz; P’’, P’; –b). (20)

Through substitution of the Green’s tensor and its reciprocity

relation in (18), and redefinition of the variables {P, p’ }

the source-type integral representation for the electric field

solution of Maxwell’s equations in the Fourier transform (10)

domain is found as:

J
PH z

E(kz; p; kw) = ~(kx; p, p’; kw).~c(kz; P’; ~p)p’dp’.

PL —
(21)

C. The Green’s Tensor

The kernel of the source-typ~integral equation (21) consists

of the electric Green’s tensor G in the Fourier transfo~ do-

main. To determine the Green’ ~tensor, the Maxwell equations

(10) for the point-source problem ?’ = (1/P’)~(P – P’)iP have
~G ,p

to be solved. For P = X, P, w lthe solution ~ of (10) is the

p-column of the electric Green’s tensor.
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For p # p’ the equations are homogeneous. They consist

of four coupled ordinary differential equations, complemented

with two algebraic equations. Hence, the general solution

contains four independent v~iab$s. Following [13, p. 91],

the transversal components {~z, H. } satisfy the scalar wave

equation

S~bsequen~y, ~he radial and azimuthal field components

{B,, ~P, Hp, ~P}z can be expressed in the transversal

components {fiz, Hz }.

The general solution of the scalar wave equation is a linear

combination of the Bessel function ~~~ (kpp) and Hankel func-

tion of the second kind H[~) (kPp). Since the field components

have to be bounded at p = O, the Hankel-function has to be

absent in the area O < p < p’. In this region the general

solution becomes

[1f;{&=}(&;P; kp) = {&&}& (&P). ~~ > (23)

with

i=.

The boundary condition of outward traveling, exponential

decaying fields at p ~ w requires that the Bessel function

is absent in the area p’ < p < cc. The general solution

in this region is obtained from (10) through substitution

{JL (kp~)> ~S> .f$} - {H$(kPp)> $i) t~}
To determine the constants {j~, f;, f;, f; }, the general

solutions for the regions O < p < p’ and p’ < p < cc are

matched at p = p’. To this end, the radial field components

fip, Hp are eliminated from (23) with the help of the algebraic

relations. The resulting set of four first-order differential

equations for the transversal and azimuthal field components

is integrated over an infinitesimal small p-interval containing

the point-source at P = p’. Integration of the Dirac functions

gives a finite-size step at p = p’ for the field-components:

~G,p

::

EZ
~G,P

E
-_&,, (P’ +0) -
HZ
~G,P

Hv

J+

H:
(-@f)’ ‘p

kv

(P’ - o)= w~bp’z $PfJ
– 46PV

, (24)

f#p.

in which 6Pq is the Kronecker symbol. Its value is 1 if p and q

are equal and O otherwise. With the general solution (23) in the

regions O < p < p’ and p’ < p < m four linear relations for

the four constants {f;, fj, f;, f;} result, providing a unique

solution. Subsequently, the p-column of the electric Green’s

tensor follows as the electric field in the general solution (23).

The Green’s tensor becomes

~(kz; p,p’; kW) = ~“(kx;p,p’; k~)+~s(kz; p,p’; kP), (25)—

with the equations shown at the bottom of the page.

D. Source-type Integral Equations in the Spatial Domain

In (25), the Green’s tensor is split in a regular part (super-

script “r”) and a singular part (superscript “s”). The singular

part takes the Dirac function in the radial electric field com-

ponent into account. The regular part of the Green’s tensor

is finite at p = p’. Hence, integration of the regular part of

the Green’s tensor can be done straightforwardly. The singular

part is only present in the pp component of the Green’s tensor

and contains the Dirac function fi(p – p’). Analytic integration

of the singular part is possible. Substitution of the electric

Green’s tensor (25) in the integral representation (21) and

analytic integration of the singular part yields

/

PH ZT
—— ~ (kc; P, p’; kw).j’(kz; p’; kP)p’dp’. (26)

FL —

[1
000

ES=–. l—6(p–p’) o 1 0 ,— ~w&@’ 000

~r

~. ~d”.H~)(kpp>)J~p (kP/@>— 2w~b = P< = min{p, P’}, P> = max{p, P’},

00 0

–kz~z

o
–jk2kv ~p,

k;pp’ k:p “

jk2ky8p
o— – $apap,

k;p’
P
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Through direct substitution it can straightforwardly be checked

that (26) indeed represents the solution of (10). The represen-

tation of the solution of Maxwell’s equation in the spatial

domain (7) follows after application of the inverse Fourier

transformation. Furthermore, the electric contrast source (8)

and its Fourier representation (12) are substituted:

{&w($’,/+) - Eb}@;P’;kp)
exp(jkZ (z’ – Z)]p’dddp’dkZ. (27)

For observation points (x, p) inside the channel waveguide

DW, the electric field appears at both the left and right hand

side. Hence, (27) constitutes a homogeneous Fredholm integral

equation of the second kind. A nontrivial solution exists only

for those discrete values k~ that are propagation constants

of discrete modes. The corresponding solution represents the

electric field distribution of the discrete mode. The magnetic

field can be found by taking the curl of the electric field

strength.

The integral equation can be solved with the method of

moments, as will be outlined in Section IV.

IV. NUMERICAL IMPLEMENTATION

The source-type integral equation analysis applies to

channel curved waveguide structures with an arbitrary cross-

section. In the numerical computations, however, we restrict

ourselves to channel waveguides with a rectangular cross-

section DW:

D w: –:5X<;, p~<p<p~.

The channel waveguide and background are assumed ho-

mogeneous (with permittivity SW and &b, respectively) and

loss-free: &w, &b e R. The numerical implementation plays an

important role in the succesful application of the source-type

integral equation method. Hence, an extensive discussion of

its numerical aspects is given in this section.

In order to find the nontrivial solutions of the source-type

integral equation, the method of moments is applied [14]. The

electric field E(z, p) is expanded into a series of expansion

functions ~P~(z, p).

P,Q

IZ$, P) = ~ Epq.fwl(w), (z, p)eDw. (28)
p,q=l,l

Subsequently, a weighting procedure with weighting functions

wmn (x, p) is applied over the cross-section of the waveguide.

Both the expansion functions and the weighting functions are

chosen separable in an x-dependent and a p-dependent part

.fwz(~ P) = fg(P)f;($)>

Wmn(z, P) = 4i(P)’&(~)>

mop t {1,..., ~}, n,q c {L..., Q}. (29)

Substitution of the expansion of the electric field (28) in

the source-type integral equation (27) and application of the

weighting procedure yields a set of 3 * P * Q homogeneous

linear algebraic equations for 3 * P x Q components of the

expansion vectors ~P~, shown in (30) at the bottom of the

page, in which

J
h/2

L:q = W;(z) .f:(z)dz, (31)
–h/2

L~P =

s
“H %( P) J;(PMP, (32)

PL

R:q(k.)7pc

h/2

-/ /

h/2
—

–h/2 –h/2

x exp[jkz(z’ – x)]w~(:c).~~(x’)dz’dx, (33)
pIl PH ZV

//
G’ (kc; P>P’; &) ’wL(P)R“ (kz; kP) = p. _

=m

f:(P’)P;~P’dP. (34)

The discrete form of the source-type integral equations con-

stitutes a system of 3 * P * Q homogeneous linear equations.

This system can be represented as

A(kP).El = O, (35)

in which A(kv ) is the system’s matrix. A nontrivial solution

exists only if its determinant is equal to zero. The values

of kw for which this happens are the propagation constants

of the discrete modes. The vector E contains the individual

expansion vectors ~Pq of the electric field distribution of the

discrete mode. The zero-determinant condition is the resonance

condition for the source-type integral method:

det{A(kw)} = O. (36)

The numerical procedure used to determine the zeros of the

resonance condition (36) in the complex k~-plane, is the

method as presented by Delves and Lyness [15]. It is based on

numerical integration of the Cauchy integrals over a contour

enclosing the zeros. The propagation constants of a hybrid

Transversal Electric (TE) and its corresponding Transversal

Magnetic (TM) counterpart are pair-wise positioned closely

together in the complex kv-plane. Both propagation constants

are computed at the same time. After the propagation constants

[1
100 P,Q

Y
L~PL:q () ~ () .~Pq =

jw{&w – q}

El m ~~P(kr; kp)REq
27r

UdL%apq,
p,q=l,l 001 p,q=l,l –w

rne{l, . ... P}. ne{l, Q},,Q}, (30)
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kP of the discrete modes have been determined, the electric

field inside the channel follows from the expansion (28) with

the expansion vectors ~P~, which in turn are contained in the

eigenvector ~ of the system’s matrix A(k9).

To determine the coefficients of the system’s matrix, a

specific choice for the expansion and weighting functions

has to be made, taking into account that the inverse Fourier

transformations in (30) have to be implemented. As this is in

general a very CPU-time consuming activity, the choice of the

expansion functions and weighting functions is done such that

these inverse Fourier transformations can be done efficiently

and in a numerically stable manner.

The integrand of the inverse Fourier transformation is the

product of the tensorial part @’P (kZ; k~) and the scalar

part R~~ (kx). The tensorial part depends on the propagation
constant kq, whereas the scalar part is not. The infinite integra-

tion interval k.~(–cm, cm) is chopped off to k. c(–C, C) and

subsequently partitioned into a set of subintervals (A~, B3 ),

j’~{ 1,...,J}.Each subinterval is normalized to ( – 1, 1) thrgugh

the introduction of the normalized integration variable kZ =

~ Expansion of ~RP (kZ (kZ); kP) into a series–1+2=.

of Chebychev polynomials Tk ( ix ) yields

The integrations in (37) are only dependent on the transversal

discretization parameters n, qc{l, . ..Q}, the interval num-

ber jE{l, .. .J}, and the Chebychev polynomial number

kc{ 1,.. .K}. They are computed numerically and the results

are stored. At this point, the evaluation of (37) for specific

values of the radial discretization number m, pe{ 1, ..P} and

propagation constant kP is merely an expansion of the function

RP (~z: kp) into a series of Chebychev polynomials and
=w
summation of the integrals over the Chebychev polynomials

which were already computed. Hence, an extremely efficient

algorithm for computing the inverse Fourier transformation

is obtained.

In order for this strategy to work in a numerically stable

manner, a proper choice for the expansion and weighting

functions is required. The boundary C of the integration

interval should take the same value for all combinations

m,p epsilon {1, ...P} and for all values kw. A proper value

of C’ is chosen by defining the radial expansion functions f; (p)
over the entire width of the channel waveguide, such that all

integrands decay as O ( Ik cI‘a ), Ik~ I + m. To minimize

the integration length C, the value of a is maximized. By

taking the transversal weighting functions w:(z) different

from the Dirac function (i.e. no point-matching), Rig (kx)

decays as 0(/kZl–2), Ikxl + m and the value a = 2 is

guaranteed. With respect to these considerations, we make the

following choice for the expansion and weighting functions.

In the radial direction we take expansion functions closely

related to the cubic B-spline (~: = BP. see [16, p. 199]).

The weighting functions are Dirac functions (point-matching,

w% = 6m). In the transversal direction, triangle functions are

used as expansion functions (f: = Ag) and pulse functions as

weighting functions (w: = IIn). These expansion and weight-

ing functions are defined through (38), shown at the bottom

of the page. For these expansion and weighting functions

the spatial integrations in the radial direction (3 1)–(33) are

performed analytically, whereas the spatial integration in the

radial direction (34) is performed numerically using a 16-point

Gaussian integration rule. These numerical integrations require

the Bessel functions JkW(kPp) and lfpp) (kPp) to be computed

for varying values of kP and p. The order of the Bessel function

is large. The arguments range over the negative imaginary

axis and part of the positive real axis. High accuracy for the

Bessel function is required. Therefore, in the regions where

the order and argument are of the same order of magnitude

a numerical implementation of the Bessel functions based on

Airy functions [17] is used, with asymptotic expansions listed

in [18]. The asymptotic expansions for the Bessel functions

are those of Olver [19], [20]. In all other regions the Debye

expansion for the Bessel functions is used.

V. NUMERICAL RESULTS

To validate the theory developed in the previous sections

and to verify the correctness of the numerical implementation,

the source-type integral equation method (STIM) is applied

1
BP(P) = ; + —

8(Ap)3

&Z(P) = 6(P – AC),

‘(P – A-2)3 if Pp–2 < P < Pp–1,
–3(p – pp-l)~ + 3Ap(p – pp_l)2’+

+3( Ap)2(f7 – Pp-l) + (Ap)3 if Pp–1 5 P< Pp>

–3(pp+l – P)3 + 3@(Pp+l – P)2+ if

+3(~P)2(Pp+l – P) + (~P)3 PP5P5PP+1>

,jib+z - P)3 if Pp+l 5 P 5 Pp+2>
else,

(38)
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Ao= 150pm

n ~= 150

20pm

.
pH=200 O pm

H

p=o

Fig. 2. Curved channel waveguide configuration converging to a curved slab
for H -+ co.

to compute the fundamental hybrid modes of a low-contrast

configuration; the configuration of Fig. 2. A curved rectan-

gular channel waveguide with refractive index nW = 1.52

is embedded in a homogeneous background with refractive

index nb = 1.50. The width W of the waveguide equals 2.0

~m, whereas its height H is variable. The outer radius of

curvature pH equals 800.0 &m. The waveguiding structure

is operated at the free-space wavelength ~. = 1.5 ~m.

The source-type integral equation method is employed with

a horizontal discretization number P = 14 and a vertical

discretization number Q = 6, yielding a square system’s

matrix with dimension 3 * P * Q = 252. For this discretization
each evaluation of a pair of propagation constants typically

requires 1 hour of CPU-time on a VAX 6620 computer system.

As the height H tends to infinity, the channel waveguide

configuration transforms into a slab waveguide configuration.

For the curved slab waveguide numerous numerical methods

to compute the propagation constants of the discrete modes

are available [11]. In agreement with common convention,

the complex propagation constant kv of these modes is repre-

sented through an effective refractive index term Nef ~ and a

radiation loss term Lr.d, related through

~.ff = Re{kq}/(kOpH),

Lrad = –10 . n . Im{kW}/in (10), [dB/(90°)]. (39)

The effective refractive index is a measure for the phase

velocity of the mode, the radiation loss describes the amount

of power radiating away from the channel.

In Fig. 3 radiation loss of the fundamental hybrid modes

TEoo and TMoo of the curved channel waveguide is given as

a function of the height H. The curves for H = m correspond

to the curved slab waveguide. It seems that the radiation losses
for the fundamental modes tend to those of the corresponding

slab waveguide structure. This ensures the correctness of both

the theory and its numerical implementation.

The second configuration we will consider is that of Fig. 4.

Again, a rectangular channel waveguide with refractive index

nW = 1.52 is embedded in a homogeneous background with

—.—
8 10 12 14 16 l= o

— l-l

Fig. 3. Radiation loss versus height H of the channel waveguide.

Ih AO

pH =r Lo

p=o

Fig. 4. Curved channel waveguide configuration with varying radius of

curvature.

refractive index nb = 1.50. Its width W and height H are

expressed in terms of the operating free-space wavelength A.:

W = w .Ao, H = h.Ao. Likewise, the outer radius of curvature

p~ is expressed in terms of AO: pH = r.~o. The value r is

variable whereas w and h are fixed: w = 4.0, h = 2.0. For r

tending to infinity, the curved channel waveguide structure

transforms gradually into a straight one. For the operating

free-space wavelength A. = 1.5#m, Table I shows both the

effective refractive indices and the radiation losses of the

fundamental modes for varying radii of curvature. The results

are obtained with discretization P = 10 and Q = 5, The

radiation losses for the fundamental TE-mode are graphically

represented in Fig. 5.

For comparison, numerical results for the same configura-

tion as obtained with two other numerical methods have also

been

1)

included:

EIM: In the commonly used effective index method

(EIM) the curved channel waveguide structure is re-

placed by an equivalent curved planar waveguide struc-

ture: In the guiding layer the refractive index is equal

to the effective refractive index of the inner region
pL ~ p ~ pH of the channel waveguide stracture. The

effective index of the regions p < pL and p > pH

is equal to nb. Numerous numerical techniques for

the determination of the propagation constants of the

discrete modes of the curved planar waveguide structure

exist, cf. [11]
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TABLE I

N.f~ANDLv.~ OF THE FUNDAMENTAL MODES VERSUS THE

RADIUS OF CURVATUREPH = r. AOFORTHE CONFIGURATION
OF FIG 4: (a) TE-POLARIZATION AND (b) TM-POLARIZATION
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1.9097

4.0816
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STIM MoL EIM
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1.7131

3.5774

7.0747

13.172

23.047

1.5068269

1.5064572

1.5059981

1.5054095

1.5046160

1.5034476

1<5068216

1.5064507

1.5059887

1.5053956

1.5045934

1.5033661

1.5071128

1.5067771

1.5063663

1.5058465

1.5051494

1.5041183

0.3635

0.8421

1.8844

4.0317

8.1663

1.5.549
—

—r

Flg.5, Radiation loss versus radius of curvature for the TEOO mode.
Compaisonof the source-type integral method, theeffective index method,

and the method of lines.

2) MoL: In the vectorial version of the Method of Lines

(MoL) as presented by Pascher and Pregla [2], a separa-

ble solution of the vectorial Maxwell’s equation for the

curved channel waveguide structure is constructed: in

the transversal z-direction a finite difference scheme is

applied, whereas in the radial p-direction the equations

are analytically solved.

For this low-contrast example, Table I shows a remarkable

agreement between the numerical results for the propagation

properties of the source-type integral equation method and the

method of lines. This could be expected as both methods are

vectorial and tackle the 3-dimensional configuration. Further-

more, the method of lines is known to be very accurate for

low-contrast examples. The numerical results of the effective

index method, however, strongly differ from those of the other

two methods. This can be ascribed to the reduction of the

3-dimensional configuration to the 2-dimensional one. Our

results clearly show that application of the effective index

method to curved channel waveguide structures should be done

with great care.

The source type-integral equation analysis as presented in

this paper is full-vectorial; field-plots of both the transversal

component Em the radial component EP and the azimuthal

component Eq can be obtained. Fig. 6(a) shows the intensity

plot of the fundamental TEoo mode for the radius of curvature

equal to pH = 400~o. The shift of the electric field profile

towards the outer boundaty pH of the channel waveguide is

clearly visible. The electric field intensity at the inner boundaty

OL is negligible. Contour plots of the individual electric field
components are shown in Fig. 6(b)–(d). For practical reasons

the components of the electric field strength are only computed

in the waveguiding domain D ~. Extension to the domain

outside DW is straightforward, but time consuming.

VI. CONCLUSION

A source-type integral equation analysis has been presented

for curved channel waveguides with arbitrary cross-section

embedded in a homogeneous background. The analysis is

full-vectorial and mathematically rigorous. Numerical results

for low-contrast curved rectangular waveguides have been

(a)

TMOO

Neff

MoL

1.5067598

1.5063911

1.5059322

1.5053433

1.5045465

1.5033661

L...

MoL EIM

0.8393

1.8111

3.7348

7.2986

13.442

23.290

STIM

1.5067611

1.5063941

1.5059382

1.5053538

1.5045658

1.503404’4

EIM

1.5070402

1.5067067

1.5062986

1.5057817

1.5050878

1.5040591

STIM

0.3958

0.9054

2.0003

4.2246

8.4483

15.890

T

800

700

600

500

400

300

0.3887

0.8901

1.9692

4.1659

8.3468

15.731

(b)

(b)

(c)

Fig. 6, The fundamental TEo” mode at p~ = 400A0: (a) intensity, (b)
E= -component, (c) EO-component, and (d) E“ -component. The lines in the

contour-plots are posikoned with 10% intensity-step;.

presented and compared with those obtained by the method of

lines. The differences in computed propagation losses of the
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guided modes between these techniques is marginal. However,

the numerical result from the commonly used Effective Index

Method, in which one dimension of the waveguide structure

is eliminated, differ strongly from the other two methods,

which take all dimensions into account. Extension of the

numerical implementation of the source-type integral method

to nonrectangular waveguides is possible, but may require a

new choice of expansion and weighting functions.

The forthcoming research will be concentrated on the

extension of the source-type integral method to curved channel

waveguides embedded in a multi-layered background, as they

normally occur in integrated optical applications. For this

aim, a formalism similar to the one used in the source-type

integral analysis of straight waveguides [6] will be applied.

Furthermore, high-contrast channel waveguide configurations

will be considered.
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