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Rigorous, Full-Vectorial Source-type Integral
Equation Analysis of Circularly
Curved Channel Waveguides

Harrie J. M. Bastiaansen, J. Michiel van der Keur, and Hans Blok, Member, IEEE

Abstract—A source-type integral equation method is presented
to determine the propagation constants, the radiation losses, and
the electromagnetic field distributions of the discrete (“"guided')
modes in circularly curved, integrated optical channel waveguides
embedded in a homogeneous background. The method can be
extended to the case of a multilayered background, e.g. a ridge
waveguide. The source-type integral equation forms an eigen-
value problem, where the electric field strength represents the
eigenvector. This problem is solved numerically by applying the
method of moments. Numerical results are presented for vari-
ous rectangular channel waveguides situated in a homogeneous
embedding and compared with those of other modeling methods.

I. INTRODUCTION

PTICAL WAVEGUIDES are the basic components of

optoelectronic integrated circuits. They interconnect var-
ious devices present on a circuit. As such, interconnecting
waveguide tracks along which light is guided consist of both
straight and curved sections. The sections are either of the
ridge waveguide type or of the diffused channel type. For
a successful design of these optoelectronic circuits, accurate
modeling tools for both straight and curved waveguides are
essential. In this paper we focus on a rigorous computation of
the properties of the curved waveguide sections, i.e. radiation
loss and modal field distributions. In recent approaches to
tackle this problem [l], [2] an effective index method for
curved waveguides has been most widely used to transform the
rather complicated ridge or channel waveguide structure into
a curved slab waveguide structure (for an excellent overview
see [3]). The approximations made in these approaches show
that although good curved waveguide designs have been
made, there is still need for a rigorous approach to the
problem, particularly when higher-contrast media are going
to be used. The formulation of the general 3-dimensional
curved waveguide problem in terms of source-type integral
equations along the lines followed by Baken [4] and others
[5]-17] provides such a rigorous approach.

Whether a particular modeling approach can be applied
succesfully depends on the radius of curvature (in terms of
the operating wavelength) and on the contrast between the
core of the curved waveguide and its surrounding. Due to
their approximations, most earlier approaches are restricted to
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curved structures with relative large radii of curvature. An
extensive discussion on the actual numerical modeling of bent
slab waveguides is presented in the book by Vassallo [3, ch.
5]. It shows that little has been published about a full-vectorial
analysis of sharply bent waveguides. Apart from the Effective
Index Method [1] and the Method of Lines [2], Rozzi has
studied the effect of curvature using a "local modes" technique
[8], and Oksanen and Lindell [9] have investigated transversely
anisotropic, curved waveguides with a variational technique.
A beam propagation analysis of bent optical waveguides [10]
has been based on the scalar wave equation.

In [11] we used a source-type integral equation analysis
to investigate the simplest curved waveguiding structure: the
circularly curved, radial inhomogeneous slab waveguide. In
the present paper a full-vectorial source-type integral equation
analysis of circularly curved channel waveguides with arbi-
trary cross-section embedded in a homogeneous background is
presented. Applying an azimuthal Fourier transform, a source-
type integral equation for the electric field strength within
the waveguiding region in the azimuthal spectral domain is
derived. With an appropriate spatial Fourier transform in the
transverse direction, a transverse spectral domain representa-
tion for the electric Green’s tensor is derived, allowing for
an integral equation formulation in which the singular part
of the Green’s tensor is integrated analytically. The resulting
integral equation is subsequently solved with the method of
moments. In order to do this efficiently and in a numerically
stable manner, special care is needed for the proper choice
for the expansion and weighting functions. Numerical results
have been obtained for curved channel waveguides with a
rectangular cross-section. Results will be discussed and com-
pared with those of other numerical techniques. In this paper
we restrict ourselves to channel waveguides embedded in a
homogeneous background. However, similar to the source-
type integral analysis for straight channel waveguides [6],
the formulation can be extended to channel waveguides in a
multi-layered background (e.g. a ridge waveguide). providing
a powerful modeling tool for the design of optical waveguides.
This will be the goal of forthcoming research.

II. FORMULATION OF THE PROBLEM

The waveguiding structure we will investigate is the cir-
cularly curved channel waveguide embedded in a homoge-
neous background (Fig. 1). A right-handed cylindrical refer-
ence frame {O,3,,1,,i,} is introduced to specify the position
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Fig. 1. Configuration of the circular curved channel waveguide in an homo-
geneous background.

in space. The z-axis coincides with the axis of curvature,
the ¢-axis is along the center of the channel waveguide, and
the p-axis points in the radial direction. The background has
permittivity e, and permeability po. The background exhibits
losses and its permittivity is complex and situated in the fourth
quadrant of the complex plane:

ep = &, — jey ep.€p > 0. (1)
The channel waveguide has arbitrary cross-section D,, with an
inhomogeneous permittivity profile £, (z, p) and permeability
to. The cross-section of the waveguide D, is described
through

D, : pL < p < pH, zr(p) <w <zg(p)

The channel waveguide is circularly curved around the axis
p = 0. The azimuthal @-direction is assumed to extend to
infinity, i.e. no 2w-periodicity of the electromagnetic fields is
assumed. As a consequence, the various parts of the curved
section have to be insulated from each other’s radiation fields.
Therefore, a perfectly conducting screen is put around the axis
of curvature. In our case, the screen is placed at the origin
pw = 0.

In the waveguiding structure discrete modes can propagate.
These are time-harmonic solutions of the source-free Maxwell
equations for which the field profiles show no deformation
upon propagation through the structures, i.e. the field profiles
are independent of the azimuthal ¢-coordinate. For discrete
modes propagating in the positive azimuthal direction, the
electromagnetic field constituents of angular frequency w and
azimuthal wavenumber %, have the form

{E,H}(z,p,0,t) = {E, H}(x, p; k) expli (wt—kop)]. 3)

The discrete modes in curved waveguides are discrete in the
azimuthal direction, but leaky in nature [11]. The azimuthal
wavenumber k,, is complex valued and situated in the fourth
quadrant of the complex plane:
b, = l{:(’p —jk:,f, kfp,kg > 0. 4)
The complex time factor exp[jwt] is omitted in the remainder
of this paper. The field constituents are solutions of Maxwell’s
equations in the space domain in cylindrical coordinates:

~¥ x H(z, p; k) + jwex, p)E(z, piky) = 0,
V x E(x, pyk,) + jwpeH(z, p ky) =0, (5)

where the space domain nabla-operation Vx is defined
through

1 - jke « ik, ~ .
V A= {;6p(pA<P) + JT(PAP}% + {_Zp_@Aw - axA<p}1p

+{0,4, — 9,A, 1, (6)

Maxwell’s equations (5) are a set of six homogeneous
coupled partial differential equations. Non-trivial solutions
only exist for discrete values of the azimuthal wavenumber k.
These solutions are the discrete modes of the curved channel
waveguide, the k-values are the propagation constants. In
this paper a full-vectorial source-type integral equation method
is derived to determine the propagation constants and the
amplitude distributivons of these discrete modes. In [11], the
source-type integral method was succesfully applied to the
case of circularly curved slab waveguides. In the next sec-
tion, the source-type integral equation analysis for circularly
curved channel waveguides embedded in an homogeneous
background is derived. The extension of this method to multi-
layered backgrounds will be the subject of a subsequent paper.

III. THE SOURCE-TYPE INTEGRAL EQUATIONS

In the source-type integral analysis, the channel waveguide
D, is regarded as a perturbation of its homogeneous embed-
ding through the introduction of an electric contrast source in
Maxwell’s equations (5):

'—i X E(xa 2 kkp) + ngbE(xa o3 ]"&p) = _ic($7 P; kcp)7
V x E(z, p; k) + jwpoH(z, p; ky) = 0, ©)

~C . . .
where J represents the electric contrast-source density that is
defined within the waveguide D, through

I (z,p3ky) = jwle(e.p) — e} Elw, pik,)  (8)
and vanishes everywhere outside D,,.

Integral representations for the solution of (7) can be ob-
tained in several ways. A derivation on the basis of the vector
eigenfunction expansion of the dyadic Green’s tensor as de-
scribed for a closely related problem in [12, ch. 2] is possible.
Because of its intrinsic simplicity, however, we use the shift-
invariance of the homogeneous background in the transversal
z-direction in this paper to solve (7) in the transverse Fourier
domain. Hitherto, Maxwell’s equations in the spatial domain
(7) are submitted to the spatial Fourier transformation

f(& / () expljk, z]dz

fa) =g | T esl-ihatlate,  ©
yielding Maxwell’s equations in the Fourier transform domain
_i(k‘v: 0 ki) X H(ky; ps b )+JW5bE(kw7P7 ko) =

R _] (k25 03 ky),

V(ky; p; k) X E(kg; pi ko) +iwpoH (ke p; k) = 0,
(10)
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in which the Fourier transform domain nabla-operation ¥
is defined as

= % 1 % ik, % .
V(ks;piky) x A= {—3p(PA¢) + ]—pﬁAp}la:

w}l

+ {—]kwAp - 8pr}Z¢7 (11)

and the Fourier transformed electric contrast-source density
equals

+ {——fA + jka

~.C mH(p) ~c

I (ka; 03 k) = / " J (z, p; k) expljksz]dz.  (12)
zr(p

The meaning of z1(p) and xg(p) is indicated in Fig. 1.

For the solution of Maxwell’s equations in the Fourier

transform domain (10) a source-type integral representation

can be derived. The derivation is based on the global form of

Lorentz’s reciprocity theorem.

A. Lorentz’s Reciprocity Theorem
The local form of Lorentz’s reciprocity theorem follows

from application of the transverse nabla-operator Vt.ﬁ =
1/p 8p(pﬁ ) to the vector

E:E (kz,p, (p)XH (—kz; p; —ky)

~A
ko) x H (ka3 pi k),
~A ~A ~A
where the electromagnetic fields {E H ,J }ks;piky)
~B ~B ~B
and {E ,H ,J }(ks;p;k,) satisfy the electromagnetic field
equations (10) in the same spatial domain. Using the vector

relations

—E_ (=ke; p;— (13)

~A ~ ~A
xH )—H N (ke; pi k) X E
~ B

_k‘P) Xﬂ )

V,.(E
—E -Z(—km; P;
~B

N(=ky:p;—ko) X E

~B x xA
—E N(ku;piko) x H (14)

and Maxwell’s equations (10), the local form of Lorentz’s
reciprocity theorem in the Fourier transform domain becomes

~B
ko) x H (=kz;p;—ke)
~A

—kp) X H (ks; p3ke) }

~A

kq))-l (k$;:0;k<ﬂ)
~A ~B

-E (km§p;k4p)'l (‘kx;l);—]ﬂp)-

~ ~A
Vix{ E (kz;p;
’_‘:/B
—E (=kz;p;
~B
= E (~kzip;—
(15)

To transform the local form of the reciprocity theorem into
a global one, (15) is substituted into the one-dimensional
divergence theorem of Gauss

/ Y, x E(kz; pikp)pdp = prF p(kz; o5 k)
L

— prF (ks pri k), L= (pr,pma). (16)

For vector fields pF (ke; p; k) vanishing at the origin p =
0 and at infinity p = oo, the right-hand side vanishes.
Substitution of the reciprocity theorem in local form (15)
yields its global form

~ ~A
/{E bai pi—k)od (ks 03 Ky)

~B

_E (km,p;kw).i (~ks; p; —ky) Ypdp =0, (17)

in which S is an arbitrary p-interval enclosing all external
electric sources.

B. Source-type Integral Equations in the
Fourier Transform Domain

In the reciprocity theorem (17), state "A" is identified with
~ o~ ~C

the electromagnetic field distribution {E, o, J } of a discrete
mode. Subsequently, state "B" is for p = x,p, ¢ identified

~Gp =Gp
with the Green’s state {E ,H ,(1/p)8(p — p')i,} for
an electric point-source, situated in p = p’ and oriented
in the direction of the unit vector z,. Substitution of the
electromagnetic fields of state "A" and state "B" in the global
form of the reciprocity theorem yields
< pH ~G,p
Ey(kx; 0/ k) =/ E  (~ksip, o' —ky).
PL
~C

J (ks p3 kp)pdp. (18)

For the meaning of pr, and pg, see Fig. 1. The tensor Q is the
~G.p -
electric Green’s tensor containing E
= , ~G,p ,
Gop(~ko; p, 05 —kp) = Eg (—kaip,p's =)
For the electric Green’s tensor a reciprocity relation can
be obtained by identification of the electromagnetic state

~ ~cC

{E H J c:f in (18) temporarily with the second Green’s state

{E ‘H
in

as its p-th column:

19)

(1/p”)6(p p" )iy}, for g = =, p, . This results

P‘l(kmvp p'i k) = qp( kai 0", ' —ky).

Through substitution of the Green’s tensor and its reciprocity
relation in (18), and redefinition of the variables {p,p'}
the source-type integral representation for the electric field
solution of Maxwell’s equations in the Fourier transform (10)

domain is found as:
~ PH ~

E(ksipiky) = | Glhaip,psk o) (hai 03 k) dp.
PL (21)

(20)

C. The Green’s Tensor
The kernel of the source-type integral equation (21) consists

of the electric Green’s tensor _g__ in the Fourier transform do-
main. To determine the Green’s tensor, the Maxwell equations

(1/p )5(p P')ip
of (10) is the

(10) for the point-source problem J J have

to be solved. For p = z, p, ¢, the solution E
p-column of the electric Green’s tensor.



404 IEEE TRANSACTIONS ON MICROWAVE THEORY AND TECHNIQUES, VOL. 43, NO. 2, FEBRUARY 1995

For p # p' the equations are homogeneous. They consist
of four coupled ordinary differential equations, complemented
with two algebraic equations. Hence, the general solution
contains four independent variables. Following [13, p. 91],

the transversal components {E,, H,} satisfy the scalar wave
equation

AT Ry LT
0,0, + 20,F, = “2F 4 2B, =0,

=~ 1 = ki: 5=
0p0y a0, o~ —SHo + I3 Ho =0,

kPZM?

Slibseguengy, Nthe radial and azimuthal field components

Im{k,} <0.  (22)

{Ep, Eﬁ(,, H Py JEI p} can be expressed in the transversal
components {E,, H,}.

The general solution of the scalar wave equation is a linear
combination of the Bessel function J,, (k,p) and Hankel func-
tion of the second kind H, ,gi)(k,, p). Since the field components
have to be bounded at p = 0, the Hankel-function has to be
-absent in the area 0 < p < p/. In this region the general
solution becomes

= =< o X <
(B E) i ik) = (B ). [JE |
H
with
1 0 0 1
~ k20, wioke ~ wepk k50,
FE = 2 H = -
= k, ' kﬁp v A .kzp k;,
—kg,kgc jwugap —Jwgbap _ szkx
kop k, k, kpp

The boundary condition of outward travelling, exponential
decaying fields at p — oo requires that the Bessel function
is absent in the area p’ < p < oo. The general solution
in this region is obtained from (10) through substitution
{ e, (kop)s f5, F5} = {HE (kop), 12, 17}

To determine the constants {f5, f57, /&, f4} the general
solutions for the regions 0 < p < p’ and p’ < p < oo are
matched at p = p’. To this end, the radial field components

E o H o are eliminated from (23) with the help of the algebraic
relations. The resulting set of four first-order differential
equations for the transversal and azimuthal field components
is integrated over an infinitesimal small p-interval containing
the point-source at p = p’. Integration of the Dirac functions
gives a finite-size step at p = p’ for the field-components:

~G,p ~G,p -k, 5

E, E, wepp’ PP

NG: ’;Gv

o , E, ' , 72 0pp

:%,p (p + O) | =Gyp (p - 0) = |weep ) (24)
H, H, == 70pe

~G.p ~Gp 5

HﬁP Hsa ? pr

in which 6,4 is the Kronecker symbol. Its value is 1 if p and ¢
are equal and O otherwise. With the general solution (23) in the
regions 0 < p < p’ and p’ < p < oo four linear relations for
the four constants { f5, /5, f&. /7 } result, providing a unique
solution. Subsequently, the p-column of the electric Green’s
tensor follows as the electric field in the general solution (23).
The Green’s tensor becomes

Gkwip, 05 kp) = G (ke py 0/ ko) + G (Byip, 05 k), (25)
with the equations shown at the bottom of the page.

D. Source-type Integral Equations in the Spatial Domain

In (25), the Green’s tensor is split in a regular part (super-
script "r") and a singular part (superscript "s"). The singular
part takes the Dirac function in the radial electric field com-
ponent into account. The regular part of the Green’s tensor
is finite at p = p’. Hence, integration of the regular part of
the Green’s tensor can be done straightforwardly. The singular
part is only present in the pp component of the Green’s tensor
and contains the Dirac function 6{p — p’). Analytic integration
of the singular part is possible. Substitution of the electric
Green’s tensor (25) in the integral representation (21) and
analytic integration of the singular part yields

= joxe ‘
E(kz; psk,) ~ oL (kaipiko),

L

PH ~T ~c
=/ G (ki p, 05 ko)L (ko p'sko)p'dp’. (26)
p

~s 1 000

G =———8(p—/)[0 1 0],

- Jwerp 0 0 0

G = LG B (kypo) i, (ko)

= 2(&)5[): ko P e \'Vp ’

. k. k

—]{?g —jkxapl '—;,—‘L‘l

2 . k2 jk2k

Q — kaa ——gapa 1 ~2'E Lpa +

LS4 4 ]%p P ]"ppzl ) 4
kzky jki"% p) —k; kso

P k2o 7 TkZpp

P< = min{ﬂ: p/}a P> = max{p, pl}v

0 0 0
_1.21.2 .12
k]; ];’ —Jkkzpkw O
0
0 i P k‘p‘?a P
2 —32 !
kpp/ P kp PP
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Through direct substitution it can straightforwardly be checked
that (26) indeed represents the solution of (10). The represen-
tation of the solution of Maxwell’s equation in the spatial
domain (7) follows after application of the inverse Fourier
transformation. Furthermore, the electric contrast source (8)
and its Fourier representation (12) are substituted:

i
<p) - E;_l (-’E,p7ktp)-1p

_Jv = T
- ZW.\/_OO//DUJQ (kxap7p7ktp)'

{eu(@, ') = e} Elx; s k)
expliky (2’ — x)]p’dz’ dp' dk,.

E(x; 03k

@n

For observation points (z, p) inside the channel waveguide
D, the electric field appears at both the left and right hand
side. Hence, (27) constitutes a homogeneous Fredholm integral
equation of the second kind. A nontrivial solution exists only
for those discrete values k. that are propagation constants
of discrete modes. The corresponding solution represents the
electric field distribution of the discrete mode. The magnetic
field can be found by taking the curl of the electric field
strength.

The integral equation can be solved with the method of
moments, as will be outlined in Section IV.

IV. NUMERICAL IMPLEMENTATION

The source-type integral equation analysis applies to
channel curved waveguide structures with an arbitrary cross-
section. In the numerical computations, however, we restrict
ourselves to channel waveguides with a rectangular cross-
section D,,:

;*‘
e

D, : ) <z< 5
The channel waveguide and background are assumed ho-
mogeneous (with permittivity e,, and e, respectively) and
loss-free: €, € R. The numerical implementation plays an
important role in the succesful application of the source-type
integral equation method. Hence, an extensive discussion of
its numerical aspects is given in this section.

In order to find the nontrivial solutions of the source-type
integral equation, the method of moments is applied [14]. The
electric field £(z, p) is expanded into a series of expansion
functions fpq(z, p).

PQ

Z ququ(x,p),

p,g=1,1

pL < p < pH.

(z,p)eDy,. (28)

E(z,p) =

Subsequently, a weighting procedure with weighting functions
wmn (T, p) 18 applied over the cross-section of the waveguide.

Both the expansion functions and the weighting functions are
chosen separable in an z-dependent and a p-dependent part

Joq(z,p) = fp(P)Jm(x)
Wi (T, p) = wh,(p)wy(z),
m,pe{l,..,P}tn,qe{l,.. Q} (29)

Substitution of the expansion of the electric field (28) in
the source-type integral equation (27) and application of the
weighting procedure yields a set of 3 x P % () homogeneous
linear algebraic equations for 3 x P x () components of the
expansion vectors E_,, shown in (30) at the bottom of the
page, in which

—pry’

R/2
L= [ wile) fio)s (D)
—h/2
PH
L= [ wh 0501, (32)
PL
ﬁq(kw)’?pc
h/2  ph/2
/h/z/h/z
x expljk, (¢ — x)jwy (). f7 («")da' da, (33)
PH PH ~r
2 (ki) / / (ke 023 )05 ()
PL
fE(p")p'dp'dp. (34)

The discrete form of the source-type integral equations con-
stitutes a system of 3 x P x () homogeneous linear equations.
This system can be represented as

A(k,)E =0, (35)

in which A(k,) is the system’s matrix. A nontrivial solution
exists only if its determinant is equal to zero. The values
of k, for which this happens are the propagation constants
of the discrete modes. The vector E contains the individual
expansion vectors E o Of the electric field distribution of the
discrete mode. The zero-determinant condition is the resonance
condition for the source-type integral method:

det{A(k,)} =0.

The numerical procedure used to determine the zeros of the
resonance condition (36) in the complex k,-plane, is the
method as presented by Delves and Lyness [15]. It is based on
numerical integration of the Cauchy integrals over a contour
enclosing the zeros. The propagation constants of a hybrid
Transversal Electric (TE) and its corresonding Transversal
Magnetic (TM) counterpart are pair-wise positioned closely
together in the complex k,-plane. Both propagation constants
are computed at the same time. After the propagation constants

(30

, 1 0
. wsw—-s
S om0 20| b=l ST g o GotkE,,
0o 0 1

P,g=1,1

me{l,...,P},ne{l, ..., Q}, 30)
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k, of the discrete modes have been determined, the electric
field inside the channel follows from the expansion (28) with
the expansion vectors qu, which in turn are contained in the
eigenvector E of the system’s matrix A (k).

To determine the coefficients of the system’s matrix, a
specific choice for the expansion and weighting functions
has to be made, taking into account that the inverse Fourier
transformations in (30) have to be implemented. As this is in
general a very CPU-time consuming activity, the choice of the
expansion functions and weighting functions is done such that
these inverse Fourier transformations can be done efficiently
and in a numerically stable manner.

The integrand of the inverse Fourier transformation is the
product of the tensorial part R’ p(k,:; k,) and the scalar
part 1}, (k;). The tensorial part depends on the propagation
constant k., whereas the scalar part is not. The infinite integra-
tion interval k,e(—o00,00) is chopped off to k,e(—C, C) and
subsequently partitioned into a set of subintervals (4,, B,),
Je{1,...,.J}. Each subinterval is normalized to (—1, 1) through
the introduction of the normalized integration variable k, =
-1+ Z%T_—fé Expansion of ﬁ;p(kx(l%m); k,) into a series

of Chebychev polynomials Ty (k) yields

(37

The integrations in (37) are only dependent on the transversal
discretization parameters n,qge{l,...Q}, the interval num-
ber je{l,...J}, and the Chebychev polynomial number
ke{l,...K}. They are computed numerically and the results
are stored. At this point, the evaluation of (37) for specific
values of the radial discretization number m,pe{1,...P} and
propagation constant k., is merely an expansion of the function
R p(k,;:ksD) into a series of Chebychev polynomials and
summation of the integrals over the Chebychev polynomials
which were already computed. Hence, an extremely efficient
algorithm for computing the inverse Fourier transformation
is obtained.

In order for this strategy to work in a numerically stable
manner, a proper choice for the expansion and weighting
functions is required. The boundary C of the integration
interval should take the same value for all combinations
m,p epsilon {1,..P} and for all values k. A proper value
of C is chosen by defining the radial expansion functions ff (p)
over the entire width of the channel waveguide, such that all
integrands decay as O(|k.|™®), |kz| — oo. To minimize
the integration length C, the value of « is maximized. By
taking the transversal weighting functions w;(z) different
from the Dirac function (i.e. no point-matching), Rj (k)
decays as O(|k,|72), |kz] — oo and the value o = 2 is
guaranteed. With respect to these considerations, we make the
following choice for the expansion and weighting functions.
In the radial direction we take expansion functions closely
related to the cubic B-spline (f; = Bp. see [16, p. 199)]).
The weighting functions are Dirac functions (point-matching,
wh, = 6). In the transversal direction, triangle functions are
used as expansion functions (f; = A,) and pulse functions as
weighting functions (w] = 11,,). These expansion and weight-
ing functions are defined through (38), shown at the bottom
of the page. For these expansion and weighting functions
the spatial integrations in the radial direction (31)—(33) are
performed analytically, whereas the spatial integration in the
radial direction (34) is performed numerically using a 16-point
Gaussian integration rule. These numerical integrations require
the Bessel functions Ji, (k,p) and H ,Ei) (k,p) to be computed
for varying values of &, and p. The order of the Bessel function
is large. The arguments range over the negative imaginary
axis and part of the positive real axis. High accuracy for the
Bessel function is required. Therefore, in the regions where
the order and argument are of the same order of magnitude
a numerical implementation of the Bessel functions based on
Airy functions [17] is used, with asymptotic expansions listed
in [18]. The asymptotic expansions for the Bessel functions
are those of Olver [19], [20]. In all other regions the Debye
expansion for the Bessel functions is used.

V. NUMERICAL RESULTS

To validate the theory developed in the previous sections
and to verify the correctness of the numerical implementation,
the source-type integral equation method (STIM) is applied

((,0 - pp—2)3 if Pp—2 < 4 < Pp—1>
=3(p — pp—1)* +38p(p — pp—1)*+
1 1 | 320 (e — pp-1) + (Ap)° if Pp—1 < p < pp,
By(p) = 5 + TV =3(pps1 ~ P +38p(ppr1 = p)*+
r +3(Ap) (/;p-l—l —p)+(Bp)° ?f Pp S P S Ppyts
(Pp+2 — p) if Pp+1 < P < Ppia,
L0 else,
(Sm(p) = 6([’ - pm)a
xr— .
) — I—MLI ellz —Az S I:L - .’L'q' S ALI}',
C,

—%Aw <z —zq) < %Am,

(38)
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7

150 um

n, = 150

20 pm

Py=2000 pm

p=0

Fig. 2. Curved channel waveguide configuration converging to a curved slab
for H — .

to compute the fundamental hybrid modes of a low-contrast
configuration; the configuration of Fig. 2. A curved rectan-
gular channel waveguide with refractive index n,, = 1.52
is embedded in a homogeneous background with refractive
index ny = 1.50. The width W of the waveguide equals 2.0
pm, whereas its height H is variable. The outer radius of
curvature pg equals 800.0 pym. The waveguiding structure
is operated at the free-space wavelength Ag = 1.5 pm.
The source-type integral equation method is employed with
a horizontal discretization number P = 14 and a vertical
discretization number Q = 6, yielding a square system’s
matrix with dimension 3 x P % () = 252. For this discretization
each evaluation of a pair of propagation constants typically
requires 1 hour of CPU-time on a VAX 6620 computer system.

As the height H tends to infinity, the channel waveguide
configuration transforms into a slab waveguide configuration.
For the curved slab waveguide numerous numerical methods
to compute the propagation constants of the discrete modes
are available [11]. In agreement with common convention,
the complex propagation constant &, of these modes is repre-
sented through an effective refractive index term N.s; and a
radiation loss term L,..4, related through

Negy = Relky}t/(kopm),

Lrag = —10 -7 -Im{k,}/In(10),  [dB/(90°)].  (39)

The effective refractive index is a measure for the phase
velocity of the mode, the radiation loss describes the amount
of power radiating away from the channel.

In Fig. 3 radiation loss of the fundamental hybrid modes
TEge and TMyg of the curved channel waveguide is given as
a function of the height H. The curves for H = oo correspond
to the curved slab waveguide. It seems that the radiation losses
for the fundamental modes tend to those of the corresponding
slab waveguide structure. This ensures the correctness of both
the theory and its numerical implementation.

The second configuration we will consider is that of Fig. 4.
Again, a rectangular channel waveguide with refractive index
Ny = 1.52 is embedded in a homogeneous background with

— LRraD

A 4

Fig. 3. Radiation loss versus height H of the channel waveguide.

7
// W)Lg
?\0 = 150 um
n,= 152 hAg
ny = 150
Pu=riy

p=0
Fig. 4. Curved channel waveguide configuration with varying radius of
curvature.

refractive index n, = 1.50. Its width W and height H are
expressed in terms of the operating free-space wavelength Ag:
W = w.\g, H = h.)\g. Likewise, the outer radius of curvature
pu is expressed in terms of Ag: pg = 7.Xg. The value 7 is
variable whereas w and h are fixed: w = 4.0, h = 2.0. For r
tending to infinity, the curved channel waveguide structure
transforms gradually into a straight one. For the operating
free-space wavelength Ao = 1.5um, Table I shows both the
effective refracative indices and the radiation losses of the
fundamental modes for varying radii of curvature. The results
are obtained with discretization P = 10 and ) = 5. The
radiation losses for the fundamental TE-mode are graphically
represented in Fig. 5.

For comparison, numerical results for the same configura-
tion as obtained with two other numerical methods have also
been included:

1) EIM: In the commonly used effective index method
(EIM) the curved channel waveguide structure is re-
placed by an equivalent curved planar waveguide struc-
ture: In the guiding layer the refractive index is equal
to the effective refractive index of the inner region
prL < p < pm of the channel waveguide structure. The
effective index of the regions p < pr and p > pgy
is equal to m,. Numerous numerical techniques for
the determination of the propagation constants of the
discrete modes of the curved planar waveguide structure
exist, cf. [11]
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Fig. 5. Radiation loss versus radius of curvature for the T Ego mode.
Comparison of the source-type integral method, the effective index method,
and the method of lines.

2) MoL: In the vectorial version of the Method of Lines
(MoL) as presented by Pascher and Pregla [2], a separa-
ble solution of the vectorial Maxwell’s equation for the
curved channel waveguide structure is constructed: in
the transversal x-direction a finite difference scheme is
applied, whereas in the radial p-direction the equations
are analytically solved.

For this low-contrast example, Table I shows a remarkable
agreement between the numerical results for the propagation
properties of the source-type integral equation method and the
method of lines. This could be expected as both methods are
vectorial and tackle the 3-dimensional configuration. Further-
more, the method of lines is known to be very accurate for
low-contrast examples. The numerical results of the effective
index method, however, strongly differ from those of the other
two methods. This can be ascribed to the reduction of the
3-dimensional configuration to the 2-dimensional one. Our
results clearly show that application of the effective index
method to curved channel waveguide structures should be done
with great care.

The source type-integral equation analysis as presented in
this paper is full-vectorial; field-plots of both the transversal
component E, the radial component EP and the azimuthal
component ESD can be obtained. Fig. 6(a) shows the intensity
plot of the fundamental TEqy mode for the radius of curvature
equal to ppr = 400A. The shift of the electric field profile
towards the outer boundary pg of the channel waveguide is
clearly visible. The electric field intensity at the inner boundary
p1, is negligible. Contour plots of the individual electric field
components are shown in Fig. 6(b)—(d). For practical reasons
the components of the electric field strength are only computed
in the waveguiding domain D,. Extension to the domain
outside D,, is straightforward, but time consuming.

VI. CONCLUSION

A source-type integral equation analysis has been presented
for curved channel waveguides with arbitrary cross-section
embedded in a homogeneous background. The analysis is
full-vectorial and mathematically rigorous. Numerical results
for low-contrast curved rectangular waveguides have been

TABLE I
Necyp AND Ly.qq OF THE FUNDAMENTAL MODES VERSUS THE
RADIUS OF CURVATURE pz7 = 7.AgFOR THE CONFIGURATION
OF FIG 4: (a) TE-POLARIZATION AND (b) TM-POLARIZATION

e
TEqgo
Negs Liaa
r STIM MoL EIM STIM | MoL EIM

800 | 1.5068269 | 1.5068216 | 1.5071128 | 0.3689 | 0.3635 | 0.7837
700 | 1.5064572 | 1.5064507 | 1.5067771 | 0.8541 | 0.8421 | 1.7131
600 | 1.5059981 | 1.5059887 | 1.5063663 | 1.9097 | 1.8844 | 3.5774
500 | 1.5054095 | 1.50563956 | 1.5058465 | 4.0816 | 4.0317 | 7.0747
400 | 1.5046160 | 1.5045934 | 1.5051494 | 8.2558 | 8.1663 | 13.172
300 | 1.5034476 | 1.5033661 | 1.5041183 | 15.694 | 15.549 | 23.047

(a) o

T Moo
Nesy Lyaa
r STIM MoL EIM STIM | Mol EIM

800 | 1.5067611 | 1.5067598 | 1.5070402 | 0.3958 | 0.3887 | 0.8393
700 | 1.5063941 | 1.5063911 | 1.5067067 | 0.9054 | 0.8901 | 1.8111
600 | 1.5059382 | 1.5059322 | 1.5062986 | 2.0003 | 1.9692 | 3.7348
500 | 1.5053538 | 1.5053433 | 1.5057817 | 4.2246 | 4.1659 | 7.2986
400 | 1.5045658 | 1.5045465 | 1.5050878 | 8.4483 | 8.3468 | 13.442
300 | 1.5034044 | 1.5033661 | 1.5040591 | 15.890 | 15.731 | 23.290

(b)

(@) ()
\}
|
(c) @

Fig. 6. The fundamental TEpg mode at pyy = 400M\q: (a) intensity. (b)
E-component, (¢) E,-component, and (d) E,,-component. The lines in the
contour-plots are positioned with 10% intensity-steps.

presented and compared with those obtained by the method of
lines. The differences in computed propagation losses of the
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guided modes between these techniques is marginal. However,
the numerical result from the commonly used Effective Index
Method, in which one dimension of the waveguide structure
is eliminated, differ strongly from the other two methods,
which take all dimensions into account. Extension of the
numerical implementation of the source-type integral method

to nonrectangular waveguides is possible, but may require a -

new choice of expansion and weighting functions.

The forthcoming research will be concenterated on the
extension of the source-type integral method to curved channel
waveguides embedded in a multi-layered background, as they
normally occur in integrated optical applications. For this
aim, a formalism similar to the one used in the source-type
integral analysis of straight wavegunides [6] will be applied.
Furthermore, high-contrast channel waveguide configurations
will be considered.
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